NONISOTHERMAL FLOW OF A VISCOUS INCOMPRESSIBLE FLUID
IN A TWO-DIMENSIONAL DIFFUSER

V. I. Naidenov UDC 532.516

The velocity and temperature distributions in a viscous incompressible fluid flow in a two-
dimensional diffuser are analyzed. Fully developed flow is considered, i.e., the influence
of the entrant section is disregarded. It is assumed that the diffuser walls are maintained
at a temperature depending on the polar radius. The dynamic viscosity is considered to be
an exponential function of the temperature. The problem is reduced to the solution of a sys-

tem of ordinary differential equations, which is solved by the method of successive approxi-
mations. The convergence of the iterative scheme is proved.

1. Consider the steady flow of a viscous fluid in a two-dimensional divergent channel (diffuser). We
assume that the viscosity coefficient and temperature are related by the expression

w o= peed? (1.1
in which p; is the viscosity at zero temperature and 8 is a parameter depending on the kind of fluid and the
temperature interval.

The system of flow equations exclusive of inertial and dissipative terms has the form [1]
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where ¥ is the stream function and @ is the constant coefficient of thermal diffusivity.

We specify the boundary conditions and condition of constant volumetric flow across any cross sec-
tion of the diffuser as follows:
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Here « is the aperture angle of the diffuser, and Q is the volumetric flow rate of the fluid.

Let the temperature at the diffuser walls be given by the function
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; _
T=f(r)= X Tp* (1.9

k=1
where Ty are known numbers.

It is obvious that conditions (1.4) are inapplicable in the vicinity of the origin (r = 0) so that the final
solution will be meaningful only in the neighborhood of an infinitely distant point. In other words, the influ-
ence of the entrant section and temperature conditions at its boundary is neglected.

The controlling variables and parameters in the problem are r, ¢. o, i, Q, 8, flr), a, p, and Cp v
is the density of the fluid, and Cp is the specific heat at constant pressure), so that the dimensionless stream
function ¥/Q must depend on dimensionless combinations of the above-named independent variables and
parameters:

$/Q=F(p,aBf(r), P, R, H) (1.5)
(P=1Qlia,  R=[Qlo/ws  H = BQ* /apepls?) '

where P is the Péclet number, R is the Reynolds number, and H is a parameter characterizing dissipation
effects.

If the inertia and dissipation of the flow are small (R<« 1, H«1),

Y/ Q=F@Pf(r), 9 @ P) (1.6)

it follows from (1.6) that 9F/d = 0 and, therefore, the radial directions in the diffuser are not stream-
lines. whereas for 4 = const (8 = 0) the flow is everywhere radial.

If energy dissipation is taken into account and the wall temperature is assumed to be constant, the
variable r enters into the parameter H, and the radiality of the flow is violated. For constant viscous
properties it is impossible to form dimensionless criteria containing r in nonzero powers. For i = const
an exact solution of the energy equation has been obtained in {2, 3].

We seek the solution of Egs. (1.2) in the series form

©

V(@) = D a(@r*, T, ¢) = Ebm)r- (1.7

k=0

Substituting (1.7) into (1.2) and equating coefficients of like powers of r, we obtain the system of
ordinary differential equations
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where m + n=k.
It was assumed in the derivation of Eqs. (1.8) that
ao(p) = — L2 —2@ooss) 0 (1.9)

2{sinx -~ a cos a)
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Equations (1.9) describe a slow isothermal flow of a viscous fluid, representing the zeroth approxima-
tion of the original problem [4].

With allowance for (1.7), conditions (1.3) and (1.4) assume the form

ap(+ 0/2) =0, be(Fa2)~Ty (k=1,23..)
a (4 42y =0, ag(w2)=—0Q/2 (x=01,2...)

(1.10)

We have thus reduced the problem to the integration of inhomogeneous linear equations, one of which
has constant coefficients, while the other is a Mathieu equation [5].
Using the Lagrange method [6], we write the general solutionof the system (1.8) in quadratures:
ay () = Agsinkp + Bysin (k + 2)¢
- .%_ (— cos kg § V,sink0do - sin /C(p§ V,cos kB dﬁ::i
b

0

(1.11)
1 : : '
by (4) = Dy (¢) - — LT Y \ Filax A8 +!/-zf:\ RV d())
Here sin k¢, sin (k+ 2) ¢. cosk¢, cos (k+ 2) ¢ is the fundamental system of solutions of the first of
Egs. (1.8) without the right-hand side, yj (¢), wi (¢) are the even and odd solutions of the Mathieu equa-
tion

V() — k:'—Z (—cos(k —}-2)¢SF,\.si11(k --2)0dd {—sin(kq‘—Z)(pSF,\.cos(k;—2)9110) _
‘ 0 0

Fk(<p), ¥ (@) are the right-hand sides of the system (1.8), Ay, By, and Dy are constants determined from
conditions (1.10), and c? =y, Oy ' (0) =3 (0) y; ' (0) is the fundamental identity.

If the boundary conditions (1.4) are represented inthe form
T(r,d-a/2) = T)r* (1.12)

where k is a large number, corresponding to a rapid variation of the diffuser wall temperature, or if the
fluid flow is analyzed for small P, then for the solution of the Mathieu equation we can invoke the asympto-

tic expressions

o0

ye(@)= 2 (— i (ks (mi® —20) @

v (@)= 2 (— 1)iLi(ky)sin(mi® —20) @
= o (1.13)
kPcosa .9,,.0.5
m"'__kz_sinu—acosa’ %=~ §ia—acosa’ hy = qyi2my

in which Ij(hy) are Bessel functions.

The criterion for the applicability of Eqgs. (1.13) is the quantity m; > q. Relation (1,13} is well suited
to the calculation of the higher approximations. It follows from the form of the boundary conditions (1.12)
that the first nonzero approximation for the second of Egs. (1.8) is the function

" (1.14)
by () 'W!]lk(‘p) .
To find the function ay(¢) we need to determine the integral of the equation
af’ + (2K 4 4t - 4) e S (k42 ay = (1.15)

= B[k — k) ag"bp + 4 (k + 1) ao’ba" + by"ag” + 2biag’]

Substituting (1.14) and (1.9) into the right-hand side of (1.15), we obtain
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(1.16)

It is important to note that Ii(hk) are rapidly decaying functions as i — = and only a few term s need
to be retained for specific calculations.
We calculate the general solution of Eq. (1,16) by the method of indeterminate coefficients:

a;(9) = Agsinkg + Bysin(k +2)¢ ~ K Z (— 1T () [Ast sin (my i — 27 2)¢

+—Alsin(my' — 2i — 2) @ ++ A%sin (m'r — 2i) ¢] (1.17)
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where Lip) is the value of the characteristic equation (1,16) at the point p,
y ___’(D(a/2)sinka/2 sin(k +2)a/2 o
F T |0 @/ 2)kooska /2 (k + 2)cos (k 4- 2)a /2 l‘
sinka/2 @(a/2)sin(k+2)a/2
kcoska /2 @ (a/2)(k+ 2)cos(k + 2)a /2
t=sin(k +1)a— (k4 1) sina

' -

Bkz'—

and $(e/2) and #'(a/2) are the values of the particular solution and its derivative at the diffuser wall.
The problem is not solvable for all values of the diffuser angle; rather it is solvable only for the

values determined by the inequalities « <2.545, y,i (a/2) = 0.

We now determine the structure of the flow. To simplify the calculations we assume that qualitative
information about the behavior of a streamline is afforded by the principal term of the expansions of Eq.
(1.13) in powers of the parameter P. We assume that the wall temperature is equal to T,r~ ! It must then

be assumed in relations (1.16) that
k=1, Ay=By=0, Cy=— 8cosa

Io(0) =1, [;(0)=0 G>1), K=Brlo[cos%(sma—acosa)]" (1.18)

We solve Eq. (1.16), taking (1.9), (1.10), and (1.18) into account:
a, (¢) = A, sin @ -+ By sin 3¢ — K cos a (¢ cos @) / 2 (1.19)
where the constants A, and B, are determined from the boundary conditions (1,10).

[( sin a — a) (2c0s ¥ -;- 1) + 2asin%a J

Al:KCLgQL 3(cwsx—1)

[ a—sina
B, = KCtgaLB(cos:—i)]

If we consider the diffuser angle to be small, the functions (1.9) and (1.19) can be expanded in power
series in ¢ and ¢. whereupon we obtain for the stream function and the radial velocity component

1 37,Q

301, 4 4
Y@= —g o5 ot — ‘PZ/‘P — o e et — e )
" (1.20

0, (ry §) = g (02 — 4g?) + A 302 (s p4a22 1 80gY)
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Analyzing the radial velocity distribution, we see that for T,> 0 (walls colder than the fluid) the velo-
city increases on the diffuser axis, while in the vicinity of the walls it is lower than for isothermal flow.
For T, < 0 the velocity profile is more uniformly distributed over the diffuser cross section.

Using (1.20) and following Slezkin [7], we represent the stream function in the form
Y(r, ¢) = — A (¢) — Tho(9) /7
3 4 3
M(g) = —%( —3 )(P, Ay (g) = 80(;3 (4¢® — a®)@ (1.21)

M(9) >0, 7»2((13)/0 for 0<<op<<a/2

We consider the case T,> 0. Inasmuch as we are investigating the behavior of the streamlines for
large r, it is logical to suppose for divergent flow that ¢(r, ¢} < 0. Equation (1.21) implies

r=—Thk(¢)/ W (r,9) -+ 1 (9)) (1.22)
For the quantity r given by Eq. (1.22) to be positive, the value of ¢ must lie in the interval 0= ¢ =g,
where ¢, satisfies the equation
Y (r, @) + 2 (g) =0 (1.23)
The streamlines ¢ = const in this case are situated closer to the diffuser axis, being convex relative
to it.

If T ;< 0, the quantity ¢ must vary in the interval ¢;=¢= o/2, and the trajectories of the fluid particles,
on entering the diffuser from infinity, become deflected toward the diffuser walls, being concave relative

to the line (1.23).
If we assume that the diffuser wall temperature is constant but different at different walls:

T(r,+~al2)="Ty T(r,—al2)=1,

we obtain the following equation for the radial velocity:

z"—3(—TL:——’I‘l\\z’+4z=exp3./ =T )fp (1.24)

o / Y a

in which z(¢) = v.r. The general solution of (1.24) has the form

z(@) = €35 (099 |- Bre~3) L. 0.25D,e5° (8 =3(To—T1)/2)
where w=(0.25 62— 4)/2 is in general a complex quantity.
The constants Ay, Bj,and C; are evaluated from the conditions

a2
2(ta/2)=0, § z(@dp=0
—x/2
2. We investigate the convergence of the successive-approximation scheme, using the same method
of proof as in [7].
We estimate the moduli of the particular solution of the first equation of the system (1.8) and its
first three derivatives. We have from (1.11)

?
fe(p) = T(_ cosk(p Vi sink 6d8 -- siu &y QV,‘COQIxedO/
0

CL96

, : e 2.1
I\‘l’;:(q‘) = el —»cos(l..-;— 2y @ S['h.sin (k +2)040 -+ sin (k —{~2)q>Schos(k-,L2) 0~d0>)
0 [}

We introduce the notation
‘max | V, | << My, max | V' | < Ny, max | Fp | < Ry (2.2)

The existence of the numbers My, Ny, and Ry is inferred from the fact that the investigated functions
are continuous on a closed interval. Using relation (2.2) and computing the definite integrals, we obtain the
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upper bounds

|in] S Myl1—coskg| /K, |1y |< My]|ocos kp|
I I Mylsinkp| /&, |17 | < Myk|sinkg |k -+ N, 2.3

Analogously, we have

| Vel <R[t — cos (k + 2) @]/ (k + 2%V, | < R|sin (k +2) o| / (k + 2) (2.4)
Clearly, we can use the following expressions in the role of My and Nk:
M, = 2R, |/ (k + 2)3, Ne=R,/(k+ 2 (2.5)

Consequently, taking (2.5) into account, we obtain the final inequalities for the particular solution and
its first three derivatives:

[ Fe ] < 2R |1 — cos kg | / k* (k 4 2)?

[fe' | < 2Ry |sinkg |/ k (k + 2)

12" ] < 2Ry | cos kg |/ (k + 2)2 (2.6)
VAW | << By Rk | sinkg |/ (k 4-2)° + 1/ (k + 2))

Next we estimate the complete solution and its derivatives. Taking Conditions (1.10) into account, we
obtain for the stream function in the k-th approximation

2 (®) = £ (@) + ful@/2) xax (@, @) + fi' (2/ 2) X (2, @)
|sinke sin(k-- 2)¢

K = ,kcos(ka/Z) (k- 2)cos [(k 4- 2)a / 2] a

(2.7)
sin(k -1- 2)¢  sinke 1
X2 = lsin [(k + 2)a/2] sin (ka/2)
We introduce the function
Lgnl =211 —coskg |- 21 — cos (ka /2)| X %k (@ @) ~i- 2k | sin (ka/2)| 7on (@, @) (2.8)

With the help of (2.8) we obtain the following inequalities for the upper bounds of the complete solu-
tion and its first three derivatives

fan | < Ryl Gu| /B (B =22 |af|<Rylp| /K (k = 2)

2.9)
' | << Bol @] /B2 (4 2%, [o 1< By [ @) 12 + k + 21/  — 2)2
Using (2.9), we obtain
ke +2) [ an]| < R |gn| /& (k2 2)
Ak -+ 1) [an | <A+ 1) Ryl ¢n /R (b +2)
2k+3)a < 2k=-3) Ry |ox] 18K+ 2y (2.10)
2h(k+2) 2k 1) ax| <2 @k +1) Re| on k(& + 2) 1

QI+ 4k+4)/|a) |<EKE + 4k +4) Ry | @n |42 (k = 1)
The factors multiplying Ry on the right-hand sides of inequalities (2.9) and (2.10) are bounded func—
tions for k=1, 2, 3,.... Denoting by h the maximum number bounding those functions, we have
lahll < D’Iu ] ah” I < Uhv I al\:( l < U}: l a}:”’l < Uln Uk = th (2‘11)
The left-hand sides of inequalities (2.10) are also less than the number Uy introduced above.

Next we estimate the solution of the second equation of the system (1.8). We have on the basis of the
boundary conditions (1.10)

T, —f,(2:2)
be (f) = LylﬁT!/m(cP) + f1i ()
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\fie @ =~ (* Yik S‘yk-’/zkde + g\ W 48 (2.12)
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Making use of the asymptotic expressions (1.13), we readily verify that ¢® and k attain the same order
of magnitude as k— <. We then let

max | ¥, (¢) | < Hy
Now

|_ ylk\yzk 9+ yzksyzhdgi
0
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Taking inequalities (2.13) into account, we obtain the following bounds for the complete solution of
the second equation (1.8):

P <1 18ulo) - \ |g1A((P)1|gm 3 |Tlgm Q’”)

[ << Ty |80 ()] 1'— m Igu (@] 82n5 | i 182 W)'
ac \ 2 /
571 < Tl 1807 @]+ 22 (| &7 @) €24 7| (.14
[ i () Q
SN TP By (P = Su%de i ¥y Jude)

]

According to inequalities (2.14), we have

\ ) . k (K HWH
RO @K G+ D17 g, @]+ e DEE 11 g /D1 F ey D

The factors multiplying ITkl in inequalities (2.14) are bounded functions, because k assumes finitely

many values. The factors multiplying Hy are also bounded for all values of k, so that, denoting by d a num-
ber greater than the maximum of the indicated functions, we arrive at the inequalities

k(k+1)|bh|<(|Th|+Hh/a)d=9h

(2.15)
PO’ <O OO,
We form the series
U_EU,‘s, O—EOKS" (s=1/r) (2.16)
k=0

If these series converge in the vicinity of the zero point, the series (1.7} will converge uniformly by
virtue of inequalities (2.11) and (2.15). The following holds for the general terms of the series (2.16):

k k k
Ue=33% 2y 2 Unpetminy O+ Bh D) Upin

n=0 m==0 n=g

x (2.17)
ek:%zl]ﬂek—n'%_d,]’kl

n=1

Equations (2.7) are readily deduced by estimating the moduli of the functions e and ¥ \» determining
the numbers Ry and Hy, and taking inequalities (2.11) and (2.15) into account at the same time.
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Replacing the general term of the series (2.16) by expressions (2.17), we obtain the relations
U=U+58hU0 +9BRUB, 8=2da* (U— U, 84 4T (5)
Here Ts) is a rational function of s by condition (1.4).

Denoting by W= Ug the product of the series (2.16) and carrying out elementary transformations, we
obtain ' :

208%hm? 17y +[ 203’;’1hm'-' T+ 18ihm ] Wy (58%mAT? (5) +

a?
2mUo

\ (2.18)
+ OBmT () £+ ot — 1) W 4 mUT(5) =0 (m = da(a+2405)

1t follows from Eq. (2.18) that the function W(s) is algebraic and therefore has a nonzero radius of
convergence in the vicinity of s = 0. The radius of convergence is determined by the distance to the nearest
singular point of the function W(s), The convergence of W(s) implies the convergence of the series (2.16).

The author is indebted to L..A, Galin and N. N. Gvozdkov for assistance with the study.
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